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Abstract. Let Σ be a Riemann surface of genus g bordered by n curves homeomorphic
to the circle S1. Consider quasiconformal maps f : Σ → Σ1 such that the restriction to
each boundary curve is a Weil-Petersson class quasisymmetry. We show that any such f is
homotopic to a quasiconformal map whose Beltrami differential is L2 with respect to the
hyperbolic metric on Σ. The homotopy H(t, ·) : Σ→ Σ1 is independent of t on the boundary
curves; that is H(t, p) = f(p) for all p ∈ ∂Σ.

1. Introduction

The so-called Weil-Petersson class quasisymmetries of the unit circle S1 are those quasisym-
metries whose corresponding conformal welding maps have pre-Schwarzians in the Bergman
space. This class was studied for example by G. Cui [2], H. Guo [3], L. Takhtajan and L.-P.
Teo [13] and Y. Hu and Y. Shen [4]. The Weil-Petersson class quasisymmetries of S1 (hence-
forth WP-class quasisymmetries) can also be characterized as those quasisymmetries which
are the boundary values of quasiconformal maps with L2 Beltrami differentials with respect
to the hyperbolic metric [2, 3]. Y. Shen [10] showed that a homeomorphism h of the circle is
a Weil-Petersson class quasisymmetry if and only if h is absolutely continuous and log h′ is
in the fractional 1/2 Sobolev space. There has been growing interest recently in the so-called
WP class universal Teichmüller space and its associated mappings (see the introduction to
[10]).

Let Σ be a Riemann surface of genus g with n boundary curves, each of which is homeo-
morphic to S1. We assume that the boundary curves of Σ are borders (in the sense of Ahlfors
and Sario [1]).

The main result of this paper is that every quasiconformal map of Σ with WP-class bound-
ary values is homotopic to a quasiconformal map whose Beltrami differential is in L2. We also
show that if Σ and Σ1 are bordered Riemann surfaces of genus g bordered by n homeomor-
phic circles, then given any collection of WP-class quasisymmetries φi : ∂iΣ → ∂iΣ1 (where
∂iΣ, ∂iΣ1 denote the enumerated boundary components of the surfaces respectively), there
is a quasiconformal map f : Σ → Σ1 simultaneously extending the maps φi whose Beltrami
differential is L2 with respect to the hyperbolic metric. This generalizes a result of Cui for
the disk [2] (circulated earlier in a pre-print). Guo [3] extended Cui’s results to the Lp case
for p ≥ 1. We are grateful to the referee for clarifying the attribution of this result.

In order to prove these results, we use sewing techniques developed by two of the authors
[7] which in turn require the lambda-lemma in the form given by Z. S lodkowski [11]. We
also need a characterization of hyperbolically L2 Beltrami differentials on bordered Riemann
surfaces in terms of charts from doubly-connected neighbourhoods of the boundary curves
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into annuli. Namely, the norm in the chart with respect to the hyperbolic metric on a disk
controls the L2 estimate on the surface. In fact, this argument generalizes immediately to
differentials of any order and any Lp spaces; thus we state and prove the general result.

The authors showed (see [8, 9]) that there is a natural Teichmüller space of bordered
surfaces (which we called the refined or the WP-class Teichmüller space of bordered surfaces)
which is a Hilbert manifold. An application of the results of the present paper shows that this
Teichmüller space can be modelled by quasiconformal maps with hyperbolically L2 Beltrami
differentials.

2. WP-class maps

2.1. WP-class quasisymmetries on S1. In [8] the authors defined a Teichmüller space
of bordered surfaces which possesses a Hilbert manifold structure. We briefly review some
of the definitions and results, as well as introduce new definitions necessary in the next few
sections.

Let
D = {z : |z| < 1}, D∗ = {z : |z| > 1} ∪ {∞}, and C̄ = C ∪ {∞}.

Let A2
1(D) denote the set of holomorphic differentials h(z)dz on D such that∫∫

D
|h(z)|2dA <∞

where dA denotes Lebesgue measure. That is, h is in the Bergman space of the disk. We use
the notation A2

1(D) to be compatible with the notation for more general spaces of differentials
which we will introduce in Section 3.1.

Definition 2.1. Let Oqc
WP denote the set of holomorphic one-to-one maps f : D → C, with

quasiconformal extensions to C, such that (f ′′(z)/f ′(z))dz ∈ A2
1(D) and f(0) = 0.

By results of Takhtajan and Teo, the image of Oqc
WP under the map

(2.1) f 7−→
(
f ′′(z)

f ′(z)
dz, f ′(0)

)
is an open subset of the Hilbert space A2

1(D) ⊕ C with the direct sum inner product [8,
Theorem 2.3].

Elements of Oqc
WP arise as conformal maps associated to quasisymmetries in the following

way. Given a quasisymmetry φ : S1 → S1, by the Ahlfors-Beurling extension theorem, there
exists a quasiconformal map w : D∗ → D∗ such that w|S1 = φ. This quasiconformal map has
complex dilatation

µ =
∂f

∂f
∈ L∞−1,1(D∗)

where L∞−1,1(D∗) denotes the class of (−1, 1) differentials with bounded essential supremum.
Let fµ be the solution to the Beltrami equation

∂f

∂f
= µ̂

where µ̂ is the Beltrami differential which equals µ on D∗ and 0 on D. We normalize fµ so
that fµ(0) = 0, fµ(∞) =∞ and fµ′(∞) = 1 for definiteness. Let

fφ = fµ|D .
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It is a standard result in Teichmüller theory that fφ is independent of the choice of quasi-
conformal extension w, and furthermore fφ = fψ if and only if φ = ψ [5, 6].

Definition 2.2. Let QSWP(S1,S1) denote the set of quasisymmetric mappings φ from S1 to
S1 such that fφ ∈ Oqc

WP.

We have the following theorem of Cui [2] (see also Guo [3]).

Theorem 2.3. φ ∈ QSWP(S1,S1) if and only if φ has a quasiconformal extension w : D∗ →
D∗ with Beltrami differential µ ∈ L2

−1,1(D∗).

Here L2
−1,1(D∗) denotes the set of (−1, 1) differentials µdz̄/dz which are L2 with respect to

the hyperbolic metric on D∗; that is, satisfying∫∫
D∗

|µ(z)|2

(|z|2 − 1)2
dA <∞

where again dA is Lebesgue measure (this is a special case of Definition 3.1 ahead). Note
that since w is quasiconformal, its Beltrami differential automatically satisfies µ ∈ L∞−1,1(D∗).

Theorem 2.3 was generalized to the Lp case by Guo [3]. We also have the following recent
remarkable result of Shen [10], which answers a question posed by Takhtajan and Teo [13,
Remark 1.10].

Theorem 2.4. A homeomorphism φ : S1 → S1 is in QSWP(S1,S1) if and only if φ is abso-
lutely continuous and log φ′ ∈ H1/2(S1) where H1/2(S1) is the fractional 1/2 Sobolev space.

Although this result is not needed in this paper, we mention it because it provides a direct
intrinsic characterization for QSWP(S1,S1).

2.2. Quasiconformal maps of Riemann surfaces with WP-class boundary values.
From now on, let Σ be a Riemann surface of genus g bordered by n curves homeomorphic
to S1; we will always assume that n > 0 when the term “bordered” is used. We clarify
the meaning of “bordered” now. It is assumed that the Riemann surface is bordered in the
sense of Ahlfors and Sario [1, II.1.3]. That is, the closure Σ of Σ is a Hausdorff topological
space, together with a maximal atlas of charts from open subsets of Σ into relatively open
subsets of the closed upper half plane in C, such that the overlap maps are conformal on
their interiors. (In particular, these charts have a continuous extension to the boundary).
Thus for each point p on the boundary, there exists a chart from an open set U onto a disc
D = {z : |z| < 1 and Im(z) > 0} and a conformal map φ of U onto D, such that φ extends

homeomorphically to a relatively open set Û ⊂ Σ which takes a segment of the boundary
containing p in its interior to a line segment in the plane. We will refer to such a chart (φ, U)
as an “upper half plane boundary chart”. In order to avoid needless proliferation of notation,
we will not distinguish φ notationally from its continuous extension, nor U from Û .

We will further allow charts in the interior of Σ which map onto open neighbourhoods of
0 in C. We also allow boundary charts onto sets of the form {z : |z| ≤ 1}∩{z : |z− a| < r}
where r < 1 and |a| = 1 with conformal overlap maps as with the half-plane charts. We
will refer to such a boundary chart as a “disc boundary chart”. We refer to either a disc
boundary chart or an upper half plane boundary chart as a “boundary chart”.

Finally, when we say that Σ is bordered by n curves homeomorphic to S1, we mean that
the boundary ∂Σ consists of n connected components, each of which is homeomorphic to
S1 when endowed with the relative topology inherited from Σ. To say that Σ is of genus g
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means that Σ is biholomorphic to a subset ΣB of a compact Riemann surface Σ̃ of genus g

in such a way that the complement of ΣB in Σ̃ consists of n disjoint open sets biholomorphic
to D. Equivalently, the double of Σ has genus 2g + n.

With this terminology established we may now make the following definition.

Definition 2.5. We say Σ is a bordered surface of type (g, n) if it is a bordered surface of
genus g bordered by n boundary curves homeomorphic to S1, in the sense of the last three
paragraphs.

We will also need one more kind of chart at the boundary. Let

Ar = {z : 1 < |z| < r}.
The following proposition is elementary.

Proposition 2.6. Let Σ be a bordered Riemann surface of genus g bordered by n curves ∂iΣ,
i = 1, . . . , n, homeomorphic to S1. For each i, there exists an open set A ⊂ Σ and an annulus
Ar such that

(1) ∂iΣ is contained in the closure of A,
(2) ∂A ∩ (∂iΣ)c is compactly contained in Σ, and
(3) there is a conformal map ζ : A→ Ar for some r.

For any such A, Ar, and ζ, ζ has a homeomorphic extension to A ∪ ∂iΣ.
Furthermore, A, r and ζ can be chosen so that ∂A\∂iΣ is an analytic curve. In that case

ζ has a homeomorphic extension to the closure of A, which takes A onto the closed annulus
Ar.

We call such a chart a “collar chart” of ∂iΣ, and A a “collar” of ∂iΣ.
We may now define WP-class quasisymmetries between boundary curves of bordered Rie-

mann surfaces, as in ([8] or [9]).

Definition 2.7. Let Σ1 and Σ2 be bordered Riemann surfaces of type (gi, ni) respectively,
and let C1 and C2 be boundary curves of Σ1 and Σ2 respectively. Let QSWP(C1, C2) denote
the set of orientation-preserving homeomorphisms φ : C1 → C2 such that there are collared
charts Hi of Ci, i = 1, 2 respectively, and such that H2 ◦ φ ◦H−1

1

∣∣
S1 ∈ QSWP(S1, S1).

Remark 2.8. The notation QSWP(S1, C1) will always be understood to refer to S1 as the
boundary of an annulus Ar for r > 1. We will also write QSWP(S1) = QSWP(S1, S1).

Remark 2.9. In [7, Section 2.4], Definition 2.7 was given with QSWP(S1) replaced by standard
quasisymmetries QS(S1).

The following property of QSWP(C1, C2) ([8, 9]) verifies the naturality of Definition 2.7.

Proposition 2.10. If φ ∈ QSWP(C1, C2) then for any pair of collar charts Hi of Ci, i = 1, 2
respectively, H2 ◦ φ ◦H−1

1

∣∣
S1 ∈ QSWP(S1).

We will be concerned only with quasiconformal maps whose boundary values are in QSWP.
Any such quasiconformal mapping has a homeomorphic extension taking the closure of Σ1

to the closure of Σ2. This extension must map each boundary curve ∂iΣ1 homeomorphically
onto a boundary curve ∂jΣ2.

Definition 2.11. Let Σ1 and Σ2 be bordered Riemann surfaces of type (g, n), with boundary
curves Ci

1 and Cj
2 , i = 1, . . . , n and j = 1, . . . , n, respectively. The class of maps QC0(Σ1,Σ2)
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consists of those quasiconformal maps from Σ1 onto Σ2 such that the continuous extension
to each boundary curve Ci

1, i = 1, . . . , n is in QSWP(Ci
1, C

j
2) for some j ∈ {1, . . . , n}.

Remark 2.12. The continuous extensions to the boundary will be made without further
comment. We will not make any notational distinction between a quasiconformal map f and
its continuous extension.

For a quasiconformal map f let µ(f) denote its Beltrami differential as above. Theorem
2.3 above motivates the following definition.

Definition 2.13. Let QCr(Σ,Σ1) be the set of f ∈ QC0(Σ,Σ1) such that for any i and any
collar chart ζi : Ai → Ari on a collar Ai of ∂iΣ,

(2.2)

∫∫
Ari

∣∣µ(f ◦ ζ−1
i )
∣∣2

(1− |z|2)2
dA <∞.

This condition can be thought of as requiring that µ(f) be “hyperbolically L2 near ∂iΣ”.
The condition appears to depend on the choice of chart, and it is not immediately obvious
if this relates to whether or not the Beltrami differential µ(f) is in L2

−1,1(Σ). We will show
that the conditions are the same. We will prove this in the next section, with the help of a
general local characterization of hyperbolic Lp spaces.

3. Lp differentials with respect to the hyperbolic metric

3.1. Definition of the Lp spaces of differentials. First we establish some notation for
the various function spaces involved. It is convenient here to not have to refer directly to the
lift, as is the usual practice. The (obviously) equivalent definitions can be found for example
in [6].

Let Σ be a Riemann surface with a hyperbolic metric. Let U be an open covering of the
Riemann surface Σ by open sets U , each of which possesses a local parameter φU : U → C
compatible with the complex structure. For k, l ∈ Z a (k, l)-differential h is a collection of
functions {hU : φU(U) → C : U ∈ U} such that whenever U ∩ V is non-empty, denoting
by z = g(w) = φV ◦ φ−1

U (w) the change of parameter, the functions hU and hV satisfy the
transformation rule

(3.1) hV (w)g′(w)kg′(w)
l
= hU(z);

that is, h has the expression hU(z)dzkdz̄l in local coordinates. For example, a Beltrami
differential, or (−1, 1) differential, is a collection of functions satisfying the transformation
rule

(3.2) hV (w)
g′(w)

g′(w)
= hU(z);

that is, h has the expression hU(z)dz̄/dz in local coordinates. Similarly a quadratic differential
is a (2, 0) differential and a function is a (0, 0) differential.

We will be concerned with those differentials which are Lp with respect to the hyperbolic
metric for some p (in this paper, we always have either p = 1, p = 2, or p = ∞). Denote
the expression for the hyperbolic metric g in local coordinates by ρU(z)2 |dz|2 for a strictly
positive function ρU ; thus the metric transforms according to the rule

(3.3) ρV (w)|g′(w)| = ρU(z).
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Thus, if W is an open set, which we momentarily assume to be entirely contained in some
U ∈ U , for a (k, l)-differential we can define an Lp integral with respect to the hyperbolic
metric by

‖h‖pp,Σ,W =

∫
φU (W )

|hU(z)|pρU(z)2−mp,

where m = k + l and the right-hand integral is taken with respect to Lebesgue measure in
the plane. It is easily checked that if W is entirely contained in another open set V ∈ U ,
then the integral obtained using φV , hV and ρV as above is identical, by (3.1), (3.3) and a
change of variables.

By the standard construction using a partition of unity subordinate to the open cover U ,
one can define the norm ‖h‖p,Σ,W on any open set W ⊆ Σ, including W = Σ. Similarly, one
can define an L∞ norm

‖h‖∞,Σ,W = ‖|hU(z)|ρ−mU ‖∞
for open sets W in a single chart where the right hand side is the standard essential supremum
with respect to Lebesgue measure. As above this extends to any open subset W ⊆ Σ.

Definition 3.1. Let W ⊂ Σ be an open set. For 1 ≤ p ≤ ∞, let

Lpk,l(Σ,W ) = {(k, l)− differentials h : ‖h‖p,W <∞}.

Let

Apk(Σ,W ) = {h ∈ Lpk,0(Σ,W ) : h holomorphic}.

Denote Lpk,l(Σ,Σ) by Lpk,l(Σ) and Apk(Σ,Σ) by Apk(Σ).

It will always be understood that any Lp norm arising here is with respect to the hyperbolic
metric. Indeed, one cannot define the norm in general without the use of some invariant
metric, except in special cases (e.g. for k = 2, l = 0 and p = 1).

Remark 3.2. We will not distinguish the norms ‖ ·‖p,W notationally with respect to the order
of the differential, since the type of differential uniquely determines the norm. If the subscript
“W” is omitted, it is assumed that W = Σ.

3.2. Boundary characterization of hyperbolically Lp differentials. In this section, we
will show that the condition that a differential be hyperbolically Lp can be expressed locally
in terms of the hyperbolic metric of a disk, collar, or half-chart. Denote the expression for
the hyperbolic metric on the upper half plane by

λH(z)2|dz|2

where λH(z) = 1/Im(z). Similarly on the disc the hyperbolic metric is

λD(z)2|dz|2

where λD(z) = 1/(1− |z|2).

Theorem 3.3. Let Σ be a bordered Riemann surface of type (g, n) and let α be a (k, l)-
differential on Σ. Fix p ∈ [1,∞]. The following are equivalent.

(1) α ∈ Lpk,l(Σ).
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(2) For each point q ∈ Σ, there is a chart (φ, U) of a neighbourhood of q into the upper
half plane H, such that if α is hU(z)dzkdz̄l in local coordinates and m = k + l, the
estimate ∫∫

φ(U)

λ2−mp
H (z)|hU(z)|p <∞, p ∈ [1,∞)(3.4)

‖λH(z)−mhU(z)‖∞,φ(U) <∞, p =∞

holds for the particular choice of p.
(3) For each point q ∈ Σ, there is a chart (φ, U) of a neighbourhood of q into the unit

disc D, such that if α is hU(z)dzkdz̄l in local coordinates and m = k+ l, the estimate∫∫
φ(U)

λ2−mp
D (z)|hU(z)|p <∞, p ∈ [1,∞)(3.5)

‖λD(z)−mhU(z)‖∞,φ(U) <∞, p =∞

holds for the particular choice of p.
(4) For each boundary curve ∂iΣ, there is a collar chart (φ, U) of ∂iΣ for which the

estimate (3.5) holds.
(5) For any collar chart (φi, Ui) of any boundary curve ∂iΣ the estimate (3.5) holds.

Remark 3.4. As the reader may have noticed, there is no need to weight with the factor
(1 − |z|2) in the interior, analytically. This is because (1 − |z|2) and ρU are continuous and
the weight has no effect on the integral or on the L∞ norm. Thus Theorem 3.3 is in effect
about boundary values. However, for purely stylistic reasons, we shall keep the formulation
of the theorem as above.

This theorem follows from an elementary estimate which we state as two lemmas.

Lemma 3.5. Let Σ be a bordered Riemann surface of type (g, n). Let q ∈ Σ. There is a
chart (ζ, U) in a neighbourhood of q, with the following property. There is a disc D ⊂ ζ(U)
centred on ζ(p) if q ∈ Σ or a relatively open half-disc in H centred on ζ(q) if q ∈ ∂Σ, and a
K > 0 such that

(3.6)
1

K
≤
∣∣∣∣ρU(z)

λH(z)

∣∣∣∣ ≤ K

for all z ∈ D. Here ρU(z)|dz|2 is the expression for the hyperbolic metric on Σ in the local
parameter. The same claim holds for the hyperbolic metric λD on D and disk charts.

Proof. If q ∈ Σ, then choosing U to be an open neighbourhood of q with compact closure
in Σ, the estimate follows immediately from the fact that ρU and λH are continuous and
non-vanishing.

Fix q ∈ ∂Σ. First we show that there is at least one chart in which the claim holds. Let
π : H→ Σ be the covering of Σ by the upper half plane. There is a relatively open set Û in
Σ containing q such that there is a single-valued branch φ = π−1 on U = Û ∩ Σ. φ = π−1 is
an isometry so that we have ρU(z) = λH(z) and thus the claim holds for this chart.

Let (ζ, V ) be any other chart in a neighbourhood of q; we may assume without loss of
generality that (ζ, V ) is an upper half plane boundary chart centred on q. Let H = φ ◦ ζ−1

on ζ(U ∩ V ). In that case H maps an open interval on R containing ζ(q) to an open interval
of R containing φ(q), so by Schwarz reflection H has an analytic continuation to an open disc



8 DAVID RADNELL, ERIC SCHIPPERS, AND WOLFGANG STAUBACH

containing an open interval on R with ζ(q) in its interior. Similarly the same claim holds for
H−1. We have

ρV (z)

λH(z)
=
ρU(H(z))|H ′(z)|

λH(z)
=
ρU(H(z))

λH(H(z))

λH(H(z))|H ′(z)|
λH(z)

so it suffices to estimate λH ◦H|H ′|2/λH.
Let w = H(z) = u(z) + iv(z) for real functions u and v, and let z = x+ iy. We have that

the hyperbolic metric is λH(z) = 1/y. Since H is a biholomorphism, H ′ 6= 0. We claim that
vy 6= 0 at ζ(q). If not, we would have ux = vy = 0 at ζ(q). Furthermore since H maps an
interval on R containing ζ(q) to an interval in R, v = 0 on this interval so uy = −vx = 0
on an interval containing ζ(q). Thus the Jacobian of H at ζ(q) is zero, a contradiction.
We conclude that there is a neighbourhood of ζ(q) on which vy 6= 0. Using a Taylor series
approximation in two variables, and the fact that v(x, 0) = vx(x, 0) = 0, we have that

(3.7) C|y| ≤ |v(x, y)| ≤ D|y|
for some constants C,D > 0 on some open disc centred on ζ(p) whose closure is contained
in the domain of H. Furthermore since H is a biholomorphism there are constants 0 < E,F
such that E ≤ H ′ ≤ F on a possibly smaller open disc whose closure is contained in the
domain of H. Since λH ◦H(z) = 1/v(z), by (3.7) there is a K > 0 such that

1

K
≤ λH ◦H|H ′|

λH
≤ K

on this disk. This proves the claim.
The estimate for λD can be easily obtained by applying a Möbius transformation. �

Lemma 3.5 can be improved slightly to the following.

Lemma 3.6. Let Σ be a bordered Riemann surface of type (g, n) and let (ζi, Ui) be a collar
chart of ∂iΣ. There is an annulus Ar,1 ⊆ ζi(Ui) with Ar,1 := {z; r < |z| < 1} such that

1

K
≤
∣∣∣∣ρUi

(z)

λD(z)

∣∣∣∣ ≤ K

for all z ∈ Ar,1.

Proof. Repeating the proof of Lemma 3.6, for every point q ∈ ∂iΣ one obtains an open half-
disc {z : |z − ζi(q)| < sq} ∩ D on which the estimate holds. Since ∂iΣ is compact the claim
follows. �

Proof. (of Theorem 3.3) To see that (2) implies (1), observe that by Lemma 3.5 and the
fact that Σ is compact, there is a finite collection of charts (ζi, Ui) and discs or half-discs
Di in H such that ζ−1

i (Di) cover Σ and on which the estimate (3.6) holds. Thus there are
constants Ci(m, p) such that ρUi

(z)2−mp ≤ Ci(m, p)λH(z)2−mp for p ∈ [1,∞) and ρUi
(z)−m ≤

Ci(m,∞)λH(z)−m. Thus for p ∈ [1,∞)∫∫
Di

ρUi
(z)2−mp|hUi

(z)|p ≤
∫∫

Di

Ci(m, p)λH(z)2−mp|hUi
(z)|p <∞

for all i and for p =∞
‖ρUi

(z)−mhUi
(z)‖∞,Di

< Ci(m,∞)‖λH(z)−mhUi
(z)‖∞,Di

<∞.
Choosing a partition of unity subordinate to the finite covering proves (1).
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Now we show that (2) follows from (1). For any point q let (ζ, V ) be any chart in a
neighbourhood of q, and let D be as in Lemma 3.5. We then have that there are constants
C(m, p) such that on D, λH(z)2−mp ≤ C(m, p)ρU(z)2−mp for p ∈ [1,∞) and λH(z)−m ≤
C(m,∞)ρU(z)−m for p =∞. Set U = ζ−1(D) now and let φ be the restriction of ζ to U ; we
then have∫∫

φ(U)

λ2−mp
H (z)|hU(z)|p < C(m, p)

∫∫
φ(U)

ρ2−mp
U (z)|hU(z)|p ≤ ‖α‖p,Σ <∞

in the case that p 6=∞ and

‖λH(z)−mhU(z)‖∞,φ(U) < ‖ρU(z)−mhU(z)‖∞,φ(U) ≤ ‖α‖∞,Σ <∞
in the case that p =∞.

The equivalence of (3) and (1) follows from an identical argument. Clearly (5) implies (4)
and (4) implies (3); on the other hand, if (1) holds, an argument similar to the proof of (2)
above using Lemma 3.6 establishes (5) (note that by definition the inner boundary of a collar
chart is compactly contained in Σ). �

Finally, we will need the following lemma explicitly separating out the contribution of the
collar to the L2 norm. We will only need the p = 2 case, but since the general case requires
no extra work, we will state it in general.

Lemma 3.7. Let Σ be a bordered Riemann surface of genus g with n boundary curves. Fix
p ∈ [1,∞). Let (ζ, U) be a collection of collar charts (ζi, Ui) into D for each boundary
i = 1, . . . , n. There exist annuli Ari,1 = {z : ri < |z| < 1} ⊂ ζi(Ui) such that |z| = ri is
compactly contained in ζi(Ui), a compact set M such that

M ∪ ζ−1
1 (Ar1,1) ∪ · · · ∪ ζ−1

n (Arn,1) = Σ,

and constants a and bi such that for any α ∈ Lpk,l(Σ)

‖α‖p ≤ a‖α‖∞,M +
n∑
i=1

bi

(∫∫
Ari,1

λ2−mp
D (z)|αUi

(z)|p
)1/p

.

The constants bi depend only on the collar charts (ζ, U), ri, p, k and l (not on α), and ap is
the hyperbolic area of M .

Proof. Once the annuli are chosen, one need only choose M such that M together with
ζ−1
i (Ari,1) cover Σ. The estimates on ζ−1

i (Ari,1) follow from Lemma 3.6, as in the proof of
Theorem 3.3.

The estimate on M is obtained as follows. Let (ξj,Wj), j = 1, . . . , N be charts into D,
such that the open sets Wj form an open cover of M . Let χj be a partition of unity of M
subordinate to this covering (that is,

∑
χj = 1 on M and χj are supported in Wj). Let 1M

denote the characteristic function of M . Then

‖α‖pp,M =
N∑
j=1

∫∫
Wj

χj1M |αWj
(z)|pρWj

(z)2−mp

≤
N∑
j=1

‖α‖p∞,Wj

∫∫
Wj

χj1M · ρWj
(z)2

≤ ap‖α‖p∞,M .
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Since p ≥ 1 the claim follows from the elementary inequality (
∑
ak)

1/p ≤
∑
a

1/p
k . �

4. Homotopy classes of quasiconformal maps with WP-class boundary
values

With the aid of the local characterization of hyperbolic Lp spaces in Section 3.2, we can
now generalize Theorem 2.3 of Cui. First, we make the following definition.

Definition 4.1. Let

BD2(Σ) = {µ ∈ L∞−1,1(Σ) ∩ L2
−1,1(Σ) : ‖µ‖∞,Σ ≤ K for some K < 1}.

We thus have that

Theorem 4.2. Let Σ and Σ1 be bordered Riemann surfaces of type (g, n). Let f : Σ → Σ1

be quasiconformal with Beltrami differential µ(f). Then f ∈ QCr(Σ,Σ1) if and only if
µ(f) ∈ BD2(Σ).

Proof. This follows directly from Theorem 3.3. �

We now prove some results relating to the existence of elements of QCr in a fixed homotopy
class. They ultimately rely on the extended lambda-lemma [11], through [7, Lemma 4.2].

Theorem 4.3. Let Σ, Σ1 be bordered Riemann surfaces of type (g, n) and f : Σ → Σ1 be a
quasiconformal map. Let φi ∈ QSWP(∂iΣ, ∂iΣ1) for i = 1, . . . , n where ∂iΣ1 = f(∂iΣ). There

is a quasiconformal map f̂ : Σ→ Σ1 in QC0(Σ,Σ1) such that f̂ is homotopic to f and

f̂
∣∣∣
∂iΣ

= φi.

The homotopy G(t, z) can be chosen so that for each t, G(t, ·) is a quasiconformal map.

Proof. For each i choose collar charts (ζi, Ui) of ∂iΣ onto Ari , say, and (ηi, Vi) of ∂iΣ onto
Asi . For each i, choose numbers Ri ∈ (1, ri) and Si ∈ (1, si). Let γi = ζ−1

i (|z| = Ri) and
βi = f(γi). The map ηi ◦ f ◦ ζ−1

i is a quasiconformal mapping from ARi
onto a double

connected domain A, whose inner boundary is {z : |z| = 1} and whose outer boundary is
the quasicircle ηi(βi). By [7, Theorem 2.13(2)], the restriction of ηi ◦ f ◦ ζ−1

i to |z| = Ri is a
quasisymmetry (in the sense of Remark 2.9) onto ηi(βi).

By [7, Corollary 4.1] there is a quasiconformal mapping from A onto itself which is the
identity on ηi(βi) and equals ηi◦φi◦f−1◦η−1

i on |z| = 1. In fact, the proof of [7, Lemma 4.2 and
Corollary 4.1] shows that this map can be embedded in a holomorphic motion hi : ∆×A→ A
(in particular, a homotopy of quasiconformal maps) such that hi(1, z) = ηi ◦ φi ◦ f−1 ◦ η−1

i

for |z| = 1, hi(0, z) = z for all z ∈ ηi(βi), and hi(t, z) = z for (t, z) ∈ [0, 1] × ηi(βi). Setting
Hi(t, z) = h(t, ηi ◦ fi ◦ ζ−1

i (z)) we have a homotopy Hi : [0, 1]× ARi
→ A such that

(1) for each t ∈ [0, 1], Hi(t, ·) is a quasiconformal homeomorphism,
(2) Hi(0, z) = ηi ◦ f ◦ ζ−1

i (z) for all z,
(3) Hi(1, z) = ηi ◦ φi ◦ ζ−1

i (z) for |z| = 1, and
(4) H(t, z) = ηi ◦ f ◦ ζ−1

i (z) for |z| = Ri.

Next, we lift these homotopies back to the surfaces Σ and Σ1 by composing with the charts,
and sew them to f . Explicitly, we define the map G : [0, 1]× Σ→ Σ1 by

G(t, q) =

{
η−1
i ◦H(t, ζi(q)), q ∈ ζi(A)

f, otherwise.
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One can verify that G is continuous on the seams γi by chasing compositions. By removability
of quasicircles (see [12, Theorem 3]) G(t, ·) is in fact a quasiconformal homeomorphism for
each t ∈ [0, 1] and in particular a homotopy. Furthermore G(0, z) = f(z) for all z ∈ Σ and
G(1, z) = φi(z) for all z ∈ ∂iΣ and i = 1, . . . , n. This concludes the proof. �

We say that two quasiconformal maps f : Σ → Σ1 and f̂ : Σ → Σ1 are homotopic rel
boundary if there is a homotopy from f to f̂ which is constant on ∂Σ. (In particular, f and

f̂ are equal on ∂Σ.)

Theorem 4.4. Let f : Σ→ Σ1. f ∈ QC0(Σ,Σ1) if and only if f is homotopic rel boundary

to some f̂ ∈ QCr(Σ,Σ1).

Proof. Let (ζi, Ui) be a collar chart of each boundary curve ∂iΣ onto Ari , and similarly (ηi, Vi)
a collar chart of each boundary curve ∂iΣ1 onto Asi . We may arrange that Ui ∩ Uj is empty
for i 6= j and similarly for the sets Vi. Let φi be the restriction of f to ∂iΣ. By Theorem 2.3,
there is a quasiconformal extension ψi of ηi ◦φi ◦ ζ−1

i to D∗ such that its Beltrami differential
µ(ψi) ∈ BD2(D∗). The idea of the rest of the proof is to “patch” η−1

i ◦ ψ ◦ ζi together with f
(note it agrees with f on ∂iΣ); since µ(ψi) ∈ BD2(D∗) the resulting map will be in QCr(Σ,Σ1)
by definition.

We now proceed with the patching argument. Let Ti be a real number such that 1 < Ti < ri
and small enough that f ◦ζ−1

i (|z| = Ti) is in Vi. Since ψi is a quasiconformal homeomorphism,
there exists an Ri such that 1 < Ri < Ti and for all |z| = Ri

1 < ψi(z) < min
w∈ηi◦f◦ζ−1

i (|z|=Ti)
|w|.

In other words, the quasicircles |w| = 1, ψi(|z| = Ri) and ηi ◦ f ◦ ζ−1
i (|z| = Ti) are concentric.

Let Bi denote the domain bounded by the latter two curves. Denote by Ai the annulus
Ri < |z| < Ti. By [7, Corollary 4.1], there is a quasiconformal map h : Ai → Bi such that
h(z) = ψi(z) for |z| = Ri and h(z) = ηi ◦ f ◦ ζ−1

i (z) for |z| = Ti. Let

h̃(z) =

{
ψi(z), z ∈ ARi

h(z), z ∈ Ai.

By removability of quasicircles [12, Theorem 3], this extends to a quasiconformal map of ATi

onto ηi ◦ f ◦ ζ−1
i (ATi).

Since h̃ agrees with ηi ◦ fi ◦ ζ−1
i on the boundary of the annulus ATi , we have that they

are homotopic rel boundary up to a Z action. Thus by composing with a quasiconformal
map g : Ai → Ai such that g is the identity on ∂ATi we can arrange that h̃ is homotopic rel
boundary to ηi ◦ f ◦ ζ−1

i . Let H : [0, 1] × ATi → ηi ◦ f ◦ ζ−1
i (ATi) be such a homotopy. The

important properties of H are that

H(0, z) = ηi ◦ f ◦ ζ−1
i (z), z ∈ ATi

H(1, z) = ψi(z), z ∈ ARi

H(t, z) = ηi ◦ f ◦ ζ−1
i (z), |z| = Ti, t ∈ [0, 1].

Now we define G : [0, 1]× Σ→ Σ1 by

G(t, z) =

{
η−1
i ◦Hi(t, ζi(z)), z ∈ ζ−1(ATi)

f(z), otherwise.
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This extends to a quasiconformal map from Σ to Σ1 by removability of quasicircles. Chasing
compositions we see that G(0, z) = f(z) and G(1, z) = η−1

i ◦ ψi ◦ ζi(z). By construction

f̂(z) = G(1, z) ∈ QCr(Σ,Σ1). �

Remark 4.5. As in the previous theorem, the proof shows that the homotopy can be chosen
so that for each t, G(t, z) is a quasiconformal map.

Remark 4.6. Since by Theorem 4.2 elements of QCr(Σ) have Beltrami differentials in BD2(Σ),
this establishes the claim in the abstract and introduction: every quasiconformal map with
WP-class boundary values is homotopic rel boundary to a quasiconformal map with square
integrable Beltrami differential.

This also establishes

Corollary 4.7. For bordered Riemann surfaces Σ and Σ1 of type (g, n)

QCr(Σ,Σ1) ⊆ QC0(Σ,Σ1).

Furthermore Theorem 4.4 immediately implies the following improvement of Theorem 4.3.

Corollary 4.8. Theorem 4.3 holds with QC0(Σ,Σ1) replaced by QCr(Σ,Σ1).

Since any two bordered Riemann surfaces of type (g, n) are quasiconformally equivalent,
we also have the following result.

Theorem 4.9. Let Σ and Σ1 be bordered Riemann surfaces of type (g, n). Let φi : ∂iΣ→ ∂iΣ1

be quasisymmetric maps for i = 1, . . . , n. Then φi ∈ QSWP(∂iΣ, ∂iΣ1) for all i = 1, . . . , n if
and only if there is a quasiconformal map f ∈ QCr(Σ,Σ1) such that

f |∂iΣ = φi.

Proof. Assume that there is a quasiconformal map f ∈ QCr(Σ,Σ1) whose restriction to
each ith boundary curve is φi. By Corollary 4.7 f ∈ QC0(Σ,Σ1). Thus by Definition 2.11
φi ∈ QSWP(∂iΣ, ∂iΣ1).

Assume now that φi ∈ QSWP(∂iΣ, ∂iΣ1) for i = 1, . . . , n. Since Σ and Σ1 are both of
type (g, n), there is a quasiconformal map f : Σ → Σ1. By Corollary 4.8 there is a map

f̂ ∈ QCr(Σ,Σ1) whose restriction to ∂iΣ is φi. �

This theorem can be considered to be a generalization of Theorem 2.3 above due to Cui.

Remark 4.10. One might be tempted to suppose that Theorem 4.9 follows from 2.3 by lifting
to the universal cover. However it is not the case that the Beltrami differential of a quasicon-
formal map f in QCr(Σ,Σ1) has a lift in L2

−1,1(D∗) (recall this notation refers to differentials

which are L2 with respect to λD(z)|dz|2). In fact, unless the Beltrami differential is zero
almost everywhere, and hence f is conformal, the integral over any fundamental domain is
non-zero. By the invariance of the lifted differential, the L2 norm over D∗ must be the sum
over all fundamental domains of the L2 norm on Σ, and is therefore infinite. In summary,
unless f is conformal, the lifted Beltrami differential is not in L2

−1,1(D∗). Thus there is no
“lifted” version of Cui’s theorem.

Finally, we give an application of these results. In [9] the authors defined a Teichmüller
space of bordered Riemann surfaces as follows.
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Definition 4.11. Let Σ be a bordered Riemann surface of genus g with n boundary curves.
The Weil-Petersson class Teichmüller space of Σ is

TWP (Σ) = {(Σ, f,Σ1) : f ∈ QC0(Σ,Σ1)}/ ∼
where (Σ, f1,Σ1) ∼ (Σ, f2,Σ2) if and only if there is a biholomorphism σ : Σ1 → Σ2 such
that f−1

2 ◦ σ ◦ f1 is homotopic to the identity rel boundary.

By Theorem 4.4, the following is immediately seen to be an equivalent formulation.

Theorem 4.12. Let Σ be a bordered Riemann surface of genus g with n boundary curves.
The Weil-Petersson class Teichmüller space of Σ can be expressed

TWP (Σ) = {(Σ, f,Σ1) : f ∈ QCr(Σ,Σ1)}/ ∼
where (Σ, f1,Σ1) ∼ (Σ, f2,Σ2) if and only if there is a biholomorphism σ : Σ1 → Σ2 such that
f−1

2 ◦ σ ◦ f1 is homotopic to the identity rel boundary.
Equivalently

TWP (Σ) = {(Σ, f,Σ1) : µ(f) ∈ BD2(Σ)}/ ∼ .
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